Step of Proof: p-fun-exp-compose
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
p-fun-exp-compose
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
h
,
f
:(
T
(
T
+ Top)).
f
^
n
- 1 o
h
= primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
5.
h
:
T
(
T
+ Top)
6.
f
:
T
(
T
+ Top)
primrec(1+(
n
- 1);p-id();
i
,
g
.
f
o
g
) o
h
=
f
o primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
latex
by Subst primrec(1+(
n
- 1);p-id();
i
,
g
.
f
o
g
) =
f
o primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
)
b
0 THEN Auto
latex
1
: .....equality..... NILNIL
1:
primrec(1+(
n
- 1);p-id();
i
,
g
.
f
o
g
) =
f
o primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
)
2
:
2:
f
o primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
) o
h
=
f
o primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
.
Definitions
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
n
+
m
,
primrec(
n
;
b
;
c
)
,
n
-
m
,
#$n
,
p-id()
,
x
.
A
(
x
)
,
f
o
g
,
,
x
:
A
.
B
(
x
)
,
t
T
Lemmas
p-compose
wf
origin